
 Page 1/9

Manage the automotive embedded software development cost by
using a Functional Size Measurement Method (COSMIC)

A. Sophie Stern1, B. Olivier Guetta2

1, 2: RENAULT S.A.S., 1 avenue du Golf, 78 288 Guyancourt cedex, France

Abstract :

Year after year, more and more cars’ functionalities
are performed by software: electrical vehicle,
multimedia, connectivity with the outside world and
so on. As its software development costs are
increasing, Renault decided to develop metrics and
an estimation process in order to be able to predict
its software costs early in the vehicle or power-train
project. At the same time, Renault is working with its
major Electronic Control Units suppliers to contract
with them on the basis of software metrics. After
different studies, Renault chose the COSMIC
method as its embedded software metric. COSMIC
is for COmmon Software Measurement International
Consortium, and is also the name of a functional size
measurement method, ISO standard since 2003.

Keywords : Software metrics, Software functional
size, Software development workload estimation
process, Productivity models, COSMIC.

1. Introduction

Year after year, more and more cars’ functionalities
are performed by software: electrical vehicle,
multimedia, connectivity with the outside world and
so on. Software development costs are more and
more important in the whole project development
costs. Depending on the Electronic Control Units
(ECUs), Renault subcontracts their development
partly or entirely. But if Renault is very used to
estimate accurately the development cost of physical
parts such as harness or electronic components, it
was quite lacking in for software development cost
estimation. So the Renault embedded software
group was asked to develop a software workload
estimation process that had to be usable for all
suppliers.
The main goal of this presentation is to give a
feedback on the Renault practical experimentations
with the COSMIC method on its real-time embedded
software. We will first explain productivity models
and our choice of the COSMIC method to measure
the software size. Then we will present the COSMIC
method and how we tested it on industrial cases.
Along the way, we will give advices stemming from
our own experience. Each of them will be flagged by
the symbol ☺.

2. The software development productivity
models

2.1 Introduction

The final target of having a software development
workload estimation process usable for all suppliers
requires the knowledge of the relationship between a
software characterization and the corresponding
development workload, either for the whole software
or either for a piece of software. When the
relationship is clearly established, the software
development workload prediction becomes possible.

2.2 What are productivity models?

Productivity models are really the key of our
estimation process, they are obtained by statistics
methods.

A software productivity model is a linear relation
between a functional software size and the
corresponding development workload.

Figure 1: A software development productivity model

The software functional size is independent from the
kind of implementation. The number of lines code,
still used in a lot of organizations, is not pertinent,
especially for embedded software. Everyone knows
that for saving place, an engineer may spend a lot of
time to compact its code. Furthermore, with
Automatic Code Generators, the number of lines is
more important but the spent time is less than with
manual coding.
The linear relation between the functional size and
the software development workload is obtained with
data set on past projects by using linear regression
methods. Each datum is representing the whole

Functional size

Development
workload

y = ax + b

Variable costs

Fixed costs

Software supplier A

 Page 2/9

software or only a part of it, like a software module
for example.

Figure 2: The construction of a productivity model
with a data set on past projects

A productivity model has to be constructed on a
coherent perimeter. We explained in more details
this notion in § 5.4 to 5.6.

2.3 What are the uses of software productivity
models?

As we said before, productivity models are the key of
our estimation process. We exploit them in different
uses, the major ones are:

• Estimation of development workloads (and
deduction of costs, delays),

• Benchmarking of suppliers productivity,

• Managing of suppliers’ annual productivity.

To be pertinent, benchmark must be performed on a
coherent perimeter and with the same conditions.

Figure 3: Comparison of software productivity
models for different suppliers

Productivity models may be used as a basis of
discussion with each supplier about its software
development tooling for example. Notice that
development productivity must be related to the
quality level of the associated software.

3. The choice of the Functional Size
Measurement Method

3.1 What are functional size measurement methods?

To construct a productivity model, you need to
measure first the software functional size. Functional
Size Measurement (FSM) methods have been used
since the early eighties.

FSM methods enable to measure software
independently from its implementation, they measure
the software functional wealth.

Each FSM method has its own unit, Function Points
(FP) for the IFPUG method, COSMIC Function
Points (CFP) for the COSMIC method. The software
functional size is an intrinsic metric of software, as
the length in meters and centimetres for the size of a
car.

Once we decided to define productivity models, the
first step was to choose the FSM method.

3.2 The different FSM methods experimented

Renault experimented the COCOMO method a few
years ago in the ECU diagnostic and in the Engine
Control Module departments, but with unsuccessful
results.
The IFPUG method has been used for several years
in the Renault Information System department.
The possible application of IFPUG on embedded
software had to be checked with an evaluation.
Furthermore, we decided to experiment the COSMIC
method as it was announced to be well adapted to
real-time embedded software.

Our first experiments started on the Engine Control
Module (ECM) in 2008 with the IFPUG and the
COSMIC methods. The ECM is modular and each of
its modules is a set of model-based specifications.
The effort supplier invoice is available for each
module.
Functional size measurements were realized on the
same modules with the two studied methods, and
then results were compared.
In our experimentation, the COSMIC method suited
well for embedded software whereas the IFPUG
method appeared not pertinent especially when the
software functional size was increasing.

Functional size

Development
workload

y = ax + b
Software supplier A

Software supplier C
y = a’’x + b’’

Software supplier B
y = a’x + b’

Functional size

Development
workload

y = ax + b

Variable costs

Fixed costs

Software supplier A

An experiment point P:
a piece of software

The functional size
of the piece of software P

The workload
for the piece
of software P

 Page 3/9

IFPUG-COSMIC comparison
(extract)

0

100

200

300

400

500

600

700

800

Effort

F
un

ct
io

na
l s

iz
e

COSMIC

IFPUG

Figure 4: Part of the Renault comparison between
the IFPUG and the COSMIC FSM methods

Furthermore, the measurements with the COSMIC
method seemed more repeatable and faster than the
ones with the IFPUG method. Last but not least, as
we are more and more involved in the model based
design process for our ECUs, it appeared to us that
COSMIC could be automated in a further step on
models realized with a simulation tool.

So we decided to pursue the experimentation for
embedded software with the COSMIC method on
several types of ECU and for different suppliers. Our
results have been very encouraging since the
beginning. Let’s see now more deeply how we
applied COSMIC and the productivity models on
embedded software.

4. The COSMIC application on embedded
software

The COSMIC method is an ISO standard (19761,
2003). The whole COSMIC documentation is free
and available on Internet, cf [3].

The software functional size measurement according
to the COSMIC method is based on data movements
measurement: either through the boundaries
between functional users and software, either data
movements forwards or from memory device. So
data movements are: entries, exits, reads and writes.

Figure 5: The mapping of COSMIC concepts on a
view of software functional requirements

All COSMIC concepts are detailed in [2].

In this chapter, we will explain with some highlights
how we applied the COSMIC method on embedded
software with an industrial example: our study on the
Engine Control Module (ECM).

The COSMIC method is composed of three phases:

• The measurement strategy phase.

• The mapping phase.

• The measurement phase.

Figure 6: The measurement process in the COSMIC
measurement manual ([2])

4.1 The COSMIC measurement strategy

☺This phase has to be realized with the customers
of the productivity models.

4.1.1 Determine the purpose of the measurement

The purpose of the measurement was defined with
the purchasing and the ECM development
departments.

Functional users Software

Or peripheric

Or another
software

Boundary

DATA STORAGE WRITE

DATA RESTORE READ

DATA MANIPULATION OR
TRANSFORMATION

DATA IN ENTRY

DATA OUT EXIT

 Page 4/9

The purpose was multiple:

1. To be able to estimate the function software
development cost as soon as its specification is
written to decide to implement or not the
function.

2. To predict the cost of the software functions
development in order to negotiate if necessary
with suppliers.

3. To benchmark and manage the productivity of
our suppliers.

☺The purpose of measurement may be different
from one ECU to the other one.

4.1.2 Determine the scope of the measurement

The ECM is developed schematically depending on
the following architecture: hardware, basic software,
specific software depending on the platform, portable
software independent from the platform.

The measurement scope in 2009 included all
suppliers developing portable software, since 2010 it
also includes specific software developed by major
suppliers.

☺It is important for you to know that it is possible to
start working only on some pieces of software and
not on the whole software.

☺ In a general way, we decided to restreint our
COSMIC studies to ECUs which are model based.

4.1.3 Determine the functional users

For the ECM, functional users are interfacing peer
software, in other words, when we consider one
module, functional users are the others modules in
contact with it.

4.1.4 Determine the level of granularity

The choice of the granularity level is very important,
it may be very different from one ECU to the other
one. For the ECM, we chose the granularity level of
the software modules. There are two reasons for this
choice, the first one is that it is already the level of
costs negotiation with suppliers, the second one is
that this choice enables to have quite a well-
dimensioned data set on past projects for
constructing productivity models.

4.2 The COSMIC mapping phase

This second phase includes the identification of
functional processes, data groups and data
attributes.

4.2.1 Identify the functional processes

A model-based specification is composed of blocks
and data flows that the COSMIC method interprets
as functional processes and data movements, or not.

It is important to understand that the COSMIC
method doesn’t take into account the specification’s
architecture. The important point is to identify parts
of specification which are not only structure but
which are active parts.

4.2.2 Identify data groups

We measure variables and calibrations as data
groups with the COSMIC method.

4.2.3 Identify data attributes

☺At the present time, we do not take into account
this step of the COSMIC method in our mapping.

4.3 The COSMIC measurement phase

4.3.1 Identify data movements

This is the identification of data which are going
through the boundaries between functional users
and functional processes (Entries or Exits), and the
identification of data read from or written in the
memory (Readings and Writings).

Once you identified functional processes and
functional users, you are able to identify data
movements.

4.3.2 Apply measurement function

When data movements have been identified, you
just have to count one COSMIC Function Point (or 1
CFP) for each data movement, whatever its nature.

4.3.3 Aggregate measurement results

The last step is to aggregate the COSMIC Function
Points on the measurement.

☺For the ECM, a module is described by several
specifications files. We measure each specification

 Page 5/9

and aggregate the results in each specification and
then for the whole module.

4.4 Software enhancements COSMIC
measurements

4.4.1 Introduction

With the arrival of ECU’s architecture standards as
AUTOSAR, there is now the possibility of developing
the same code for different hardware targets. In this
context, more and more software is reused from one
ECU to another one. So beside new software
developments there are more and more software
enhancements.

The functional size measurement process is different
for a new development or for an enhancement.

4.4.2 Highlight points for enhancements
measurements

A software enhancement functional size
measurement is obtained by comparing the two
specifications releases, what we called release N
and release N-1. The COSMIC method measures
differences between the enhanced specification and
the previous one.

When modifications affect functional processes, data
movements or elementary blocks in the release N,
they are caught by COSMIC measures.

There are three types of modifications:

• Addings,

• Modifications,

• Removals.

When an element is added, we measure its size.

When an element is deleted, we measure its size
before its deletion.

When an element is modified, we measure the size
of the modification.

Elements modifications caught by the COSMIC
method are for example a variable renaming, a
modification of a variable size.

The three types of enhancements are measured,
and functional sizes are added at the end.

5. Industrial examples and key points

5.1 Obtained results

We already studied and obtained results on several
projects, on several kinds of ECUs, for new
developments and for enhancements.

For example, we have COSMIC results on:

• The Body Control Module, or BCM.

• The Engine Control Module, or ECM.

That means we realized several productivity models
for each ECU and for different suppliers.

We are studying other types of software.

5.2 An example of cost prediction

We applied our BCM COSMIC new developments
productivity models during a Request For Quotation
with suppliers for a new BCM in order to have a
target software development cost on the applicative
software. As soon as the specifications were written,
we predicted the development effort for each BCM
function within a prediction interval, we also
predicted the development effort and the associated
prediction interval for the whole applicative software.
At the same time, the suppliers realized their own
estimation each of them with their home made
method. Then we compared their estimations and
ours before negotiating.

The graph below shows the comparison between our
COSMIC predictions and the estimations of one
supplier after the first technical and economical
round and after the second round of the RFQ.

BCM RFQ: COSMIC predictions versus Supplier estimat ions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

BCM functions

E
ffo

rt

Renault COSMIC predictions

Run 1 supplier estimation

Run 2 supplier estimation

Figure 7: COSMIC use for costs predictions and
costs negotiations

We discussed with suppliers on software modules
for which their estimations were very far from our
predictions based on COSMIC and on our
productivity model.

 Page 6/9

☺ Having factual data on software development
workloads was a very good basis of discussion and
a good lever of negotiation.

5.3 COSMIC measurement’s Return On Investment
and Model Based Design

Whatever the reason why you are realizing COSMIC
measurements, one day or another you probably
have to check the Return On Investment (ROI) of
your software measurement.

So you will have to manage and to limit the cost of
your COSMIC measurements. The best way to
reduce this cost is having the more automated
measurement process as possible. Even if the
measurement is performed by humans, the more
standard the specifications are, the less interpretable
they are, the easiest and the quickest the
measurement will be. If specifications are written in
natural language, with different formalisms, with
residual errors, the measurers will have to be
experimented people as functional measurement
experts.

The COSMIC method may be applied on non model
based specifications, for example in natural
language, but there are several brakes to realize
very performing functional size measurements in
these conditions.

The COSMIC application is really favoured by Model
Based Design (MBD) because specifications are
already consistent for the measurer, the formalism is
always the same and it is easy to train new
measurers who are not necessary FSM experts.
Furthermore, automation of COSMIC measurements
on MDB specifications seems possible.

5.5 Productivity models and outliers

Remember, productivity models are realized on data
set on past projects with statistical methods as linear
regression. A productivity model is defined for a
perimeter, at least for the couple ECU and supplier.

By trying to realize a correlation on data set for a
coherent perimeter, there may be some points
outside the regression curve, these points are called
outliers. There are two major reasons of existing
outliers: either the outlier corresponds to software
intrinsically different from the other ones of the data
set, either there are other influent factors than the
functional size. Influent factors may be: restricted
delay to develop the software, high experienced
people, and so on. As you can see, influent factors
may reduce or increase the development workload.

Either outliers will go in another productivity model,
either they will be stored in a outliers checklist: let’s
see on a real industrial case.

You can see below the different steps to detect
outliers and to take them into account.

On this first figure, you can see the whole data set
on past projects for BCM for one supplier named X.

Data set on past project
BCM, Supplier X

0 20 40 60 80 100 120 140 160

COSMIC Functional size (CFP)

E
ffo

rt

Figure 8: The data set on past projects for BCM

Three points are really outside the curve, they are
materialized on the figure below with a big square.

Data set on past project
BCM, Supplier X

0 20 40 60 80 100 120 140 160

COSMIC Functional size (CFP)

E
ff

or
t

Figure 9: Materialization of the outliers

☺ Before removing the outliers, you must absolutely
find the explanation for each of them otherwise your
estimation process will never be strong. The ECU
development team has probably this explanation.

In our case, one point was corresponding to an
automatically coded software, and that is the reason
why we began to split productivity models in function
of the coding type, manual or automatic.

The two other points had been coded manually by
an expert of this software, so we put these points in
the outliers checklist.

 Page 7/9

After removing these three outliers, the data set is
the following.

Data set on past project
BCM, Supplier X

0 5 10 15 20 25 30 35

COSMIC Functional size (CFP)

E
ff

or
t

Figure 10: The BCM data set on past projects,
outliers removed

Then we realized the linear regression on the
corrected data set and the correlation factor or R2,
0.61, was quite good.

☺ R2 seems to be better when software functional
sizes are larger.

Data set on past project
BCM, Supplier X R2 = 0,61

0 5 10 15 20 25 30 35

COSMIC Functional s ize (CFP)

E
ff

or
t

Figure 11: Linear regression on BCM

5.6 Productivity models split, influent factors

There is not one software development productivity
model for all ECUs, all suppliers and all situations.

The influent factors we have already seen are: the
ECU’s type, the supplier, manual or automatic
coding, new developments or enhancements. You
can treat influent factors by separating models in
several models or consider multi-factors approaches.
For the time being, we have preferred to separate

models because it is easier to understand and to
explain simple linear regression models.

☺Do not confuse software functional size which is a
software intrinsic metric and productivity models. For
example, the software functional size is the same
either the software is manually coded or
automatically generated, but there will be two
productivity models on one perimeter with different
slopes and ordinates at the origin according to the
coding type.

☺ People often have presupposed ideas on influent
factors and on the best productivity models split. For
example, before realizing the ECM productivity
model, the development team thought there will be
several productivity models: one for interfaces
modules and one for algorithmic modules. Our
principle was, let’s try to put all modules on one
model and then we will see.

You can see below the data set on past projects for
one supplier of the ECM.

Data set on past project
ECM, Supplier: Y

0 20 40 60 80 100 120 140 160

COSMIC functional size (CFP)

E
ffo

rt

Figure 12: Data set on past projects for ECM and for
one given supplier

The result is that the correlation with all the types of
modules is good: correlation factor or R2 about 0.81.
You can see below the productivity model after the
linear regression.

A software development productivity model
ECM, Supplier: Y

R2 = 0,81

0 20 40 60 80 100 120 140 160

COSMIC functional size (CFP)

E
ffo

rt

Figure 13: A ECM productivity model for one supplier

 Page 8/9

You can see that all points are in the confidence
interval. The confidence interval is a factual
boundary to detect which points are outliers.

5.7 Contracts with suppliers based on productivity
models

Large organizations are already used to establish
contracts with their software companies based on
the fixed price of a Function Point with the IFPUG
method.

We found productivity models more interesting than
the Function Point fixed price because they take into
account the difference between large software and
small ones. There is a scale factor. Nevertheless,
the habit of contracting on metrics with a supplier is
a very mature way of working and we can copy
paste this way from Information Systems to
Embedded Software, two different worlds but with
interesting similarities.

So we decided to share with several Renault major
suppliers the COSMIC method mapping and their
productivity model on some ECUs.

5.8 Where using COSMIC, inside our outside?

FSM methods as the COSMIC method is,
productivity models, can be applied inside or outside
the company, depending if the software development
is totally or partially outsourced.

5.9 Possible organizations for software workload
estimation process

To construct a complete and strong software
workload estimation process, it is a necessity to
have in the organization a core measurement team
with different skills, especially: informatics and
statistics.

Once the process is constructed and strong, there
are several types of possible organizations for
functional size measurers and productivity models
specialists. Either there is only a core team, either
the measurement is completely disseminated, either
there is a merge of these two ways.

Automation may have a role in disseminating the
COSMIC measurement task in the whole
organization.

6. Cooperation with the embedded real-time
software community

Our Embedded Software group has written rules to
map all the COSMIC concepts on simulation tools
used by the ECUs’ development Renault teams.

Our first objective is to have the same rules for all
our suppliers.

Our final goal is to have in the real-time embedded
software community shared rules for the mapping of
COSMIC.

☺ Renault is co-managing with the Ecole de
Technologie Supérieure (ETS) of Québec the
production of the official COSMIC guideline for sizing
real-time system software. Its Web publication is
planned for the end of 2010, cf [3].

☺ Renault is also involved in the French
organization CG2E (Club des Grandes Entreprises
de l’Embarqué), in the working group “Productivity of
the development chain”, and sponsors the COSMIC
method in order to have the feedback of the
community.

7. Conclusion

When we began working on COSMIC in 2008, our
first objective was to put in place a software
development workload estimation process. With our
results, we are confident and we are pursuing on the
same track.
What we have found along the way is: if COSMIC is
a very good metric to help us to predict workloads of
software projects, COSMIC might be also our
software reference metric and the basis for a lot of
new uses.

8. Acknowledgement

We want to acknowledge here the contribution of
Professor Alain Abran, teacher at the ETS, Montréal,
Québec, who is one of the COSMIC father and who
is always there to answer to our questions.

9. References

[1] Sophie Stern: "Practical experimentations with the
COSMIC method in Automotive embedded
software field", IWSM, Amsterdam, Netherlands,
2009.

[2] COSMIC: Common Software Measurement
International Consortium, The COSMIC Functional
Size Measurement Method Version 3.0.1,
Measurement manual (The COSMIC
implementation Guide for ISO/IEC 19761), 2003.

[3] COSMICON: http://www.cosmicon.com/

 Page 9/9

10. Glossary

BCM: Body Control Module

CFP: COSMIC Function Point

COSMIC: Common Software Measurement

 International Consortium

ECM: Engine Control Module

FSM method: Functional Size Measurement method

IFPUG: International Function Points Users

 Group

MDB: Model-Based Design

ROI: Return On Investment

